Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 358: 120949, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657416

RESUMEN

Biodiversity conservation and management in urban aquatic ecosystems is crucial to human welfare, and environmental DNA (eDNA)-based methods have become popular in biodiversity assessment. Here we report a highly overlooked source of significant false positives for eDNA-based biodiversity assessment in urban aquatic ecosystems supplied with treated wastewater - eDNA pollution originating from treated wastewater represents a noteworthy source of false positives. To investigate whether eDNA pollution is specific to a certain treatment or prevalent across methods employed by wastewater treatment plants, we conducted tests on effluent treated using three different secondary processes, both before and after upgrades to tertiary treatment. We metabarcoded eDNA collected from effluent immediately after full treatment and detected diverse native and non-native, commercial and ornamental fishes (48 taxa) across all treatment processes before and after upgrades. Thus, eDNA pollution occurred irrespective of the treatment processes applied. Release of eDNA pollution into natural aquatic ecosystems could translate into false positives for eDNA-based analysis. We discuss and propose technical solutions to minimize these false positives in environmental nucleic acid-based biodiversity assessments and conservation programs.


Asunto(s)
Biodiversidad , ADN Ambiental , ADN Ambiental/análisis , Aguas Residuales , Monitoreo del Ambiente/métodos , Animales , Ecosistema
2.
Acta Biomater ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679406

RESUMEN

Discovering macromolecules and understanding the associated mechanisms involved in underwater adhesion are essential for both studying the fundamental ecology of benthos in aquatic ecosystems and developing biomimetic adhesive materials in industries. Here, we employed quantitative proteomics to assess protein expression variations during the development of the distinct adhesive structure - stolon in the model fouling ascidian, Ciona robusta. We found 16 adhesive protein candidates with increased expression in the stolon, with ascidian adhesive protein 1 (AAP1) being particularly rich in adhesion-related signal peptides, amino acids, and functional domains. Western blot and immunolocalization analyses confirmed the prominent AAP1 signals in the mantle, tunic, stolon, and adhesive footprints, indicating the interfacial role of this protein. Surface coating and atomic force microscopy experiments verified AAP1's adhesion to diverse materials, likely through the specific electrostatic and hydrophobic amino acid interactions with various substrates. In addition, molecular docking calculations indicated the AAP1's potential for cross-linking via hydrogen bonds and salt bridges among Von Willebrand factor type A domains, enhancing its adhesion capability. Altogether, the newly discovered interfacial protein responsible for permanent underwater adhesion, along with the elucidated adhesion mechanisms, are expected to contribute to the development of biomimetic adhesive materials and anti-fouling strategies. STATEMENT OF SIGNIFICANCE: Discovering macromolecules and studying their associated mechanisms involved in underwater adhesion are essential for understanding the fundamental ecology of benthos in aquatic ecosystems and developing innovative bionic adhesive materials in various industries. Using multidisciplinary analytical methods, we identified an interfacial protein - Ascidian Adhesive Protein 1 (AAP1) from the model marine fouling ascidian, Ciona robusta. The interfacial functions of AAP1 are achieved by electrostatic and hydrophobic interactions, and the Von Willebrand factor type A domain-based cross-linking likely enhances AAP1's interfacial adhesion. The identification and validation of the interfacial functions of AAP1, combined with the elucidation of adhesion mechanisms, present a promising target for the development of biomimetic adhesive materials and the formulation of effective anti-fouling strategies.

3.
J Environ Manage ; 356: 120556, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537457

RESUMEN

Invasive alien plants (IAPs) pose significant threats to native ecosystems and biodiversity worldwide. However, the understanding of their precise impact on soil carbon (C) dynamics in invaded ecosystems remains a crucial area of research. This review comprehensively explores the mechanisms through which IAPs influence soil C pools, fluxes, and C budgets, shedding light on their effects and broader consequences. Key mechanisms identified include changes in litter inputs, rates of organic matter decomposition, alterations in soil microbial communities, and shifts in nutrient cycling, all driving the impact of IAPs on soil C dynamics. These mechanisms affect soil C storage, turnover rates, and ecosystem functioning. Moreover, IAPs tend to increase gross primary productivity and net primary productivity leading to the alterations in fluxes and C budgets. The implications of IAP-induced alterations in soil C dynamics are significant and extend to plant-soil interactions, ecosystem structure, and biodiversity. Additionally, they have profound consequences for C sequestration, potentially impacting climate change mitigation. Restoring native plant communities, promoting soil health, and implementing species-specific management are essential measures to significantly mitigate the impacts of IAPs on soil C dynamics. Overall, understanding and mitigating the effects of IAPs on soil C storage, nutrient cycling, and related processes will contribute to the conservation of native biodiversity and complement global C neutrality efforts.


Asunto(s)
Ecosistema , Especies Introducidas , Suelo/química , Carbono , Biodiversidad , Plantas , Microbiología del Suelo
4.
Mar Pollut Bull ; 200: 116119, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325201

RESUMEN

Calcium ion (Ca2+) is involved in the protein-mediated larval adhesion of fouling ascidians, yet the effects of environmental Ca2+ on larval adhesion remain largely unexplored. Here, the larvae of fouling ascidian C. robusta were exposed to different concentrations of Ca2+. Exposures to low-concentration (0 mM and 5 mM) and high-concentration (20 mM and 40 mM) Ca2+ significantly decreased the adhesion rate of larvae, which was primarily attributed to the decreases in adhesive structure length and curvature. Changes in the expressions of genes encoding adhesion-, microvilli-, muscle contraction-, and collagen-related proteins provided a molecular-level explanation for adhesion rate reduction. Additionally, larvae likely prioritized their energy towards immunomodulation in response to Ca2+ stresses, ultimately leading to adhesion reduction. These findings advance our understanding of the influencing mechanisms of environmental Ca2+ on larval adhesion, which are expected to provide references for the development of precise antifouling strategies against ascidians and other fouling species.


Asunto(s)
Incrustaciones Biológicas , Urocordados , Animales , Calcio , Urocordados/química , Larva , Proteínas , Fenómenos Físicos
5.
Animals (Basel) ; 14(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338056

RESUMEN

The world's largest water diversion, the South-to-North Water Transfer Project (SNWTP) in China, has created an "invasion highway" to introduce invasive golden mussels (Limnoperna fortunei) from the Yangtze River basin to Beijing. To examine the spread and colonization patterns of this newly introduced invasive species, we conducted comprehensive environmental DNA (eDNA)-based early detection and conventional field surveys across all water bodies in five river basins in Beijing from 2020 to 2023. Our results indicated a rapid spread over the past four years. Among the 130 tested sites, the number of sites with positive signals from eDNA analysis exhibited an annual increase: Commencing with four infested sites identified through field surveys in 2019, eDNA analysis detected an additional 13, 11, and 10 positive sites in 2020, 2021, and 2022, respectively, and a substantial rise comprising an additional 28 sites in 2023. Conventional field surveys detected mussels 1-3 years later than eDNA-based analysis at 16 sites. Across all 16 sites, we detected a low population density ranging from 1 to 30 individuals/m2. These findings collectively indicate that the invasions by golden mussels in Beijing are still in their early stages. To date, golden mussels have successfully colonized four out of the five investigated river basins, including the Jiyun River (22.2% positive sites), North Canal River (59.6% positive sites), Chaobai River (40% positive sites), and Yongding River (63.6% positive sites), with the North Canal River and Yongding River being the most heavily infested. Currently, only the Daqing River basin remains uninfested. Given the significant number of infested sites and the ongoing transport of large new propagules via SNWTP, further rapid spread and colonization are anticipated across aquatic ecosystems in Beijing and beyond. Consequently, we call for the proper implementation of effective management strategies, encompassing early detection, risk assessment, and the use of appropriate control measures to mitigate the potential ecological and economic damages in invaded ecosystems.

6.
Ecol Appl ; 34(1): e2826, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36840509

RESUMEN

Environmental DNA (eDNA) has increasingly been used to detect rare species (e.g., newly introduced nonindigenous species) in both terrestrial and aquatic ecosystems, often with distinct advantages over traditional methods. However, whether water eDNA signals can be used to inform invasion risks remains debatable owing to inherent uncertainties associated with the methods used and the varying conditions among study systems. Here, we sampled eDNA from canals of the central route of the South-to-North Water Diversion Project (hereafter SNWDP) in China to investigate eDNA distribution and efficacy to inform invasion risks in a unique lotic system. We first conducted a total of 16 monthly surveys in this system (two sites in the source reservoir and four sites in the main canal) to test if eDNA could be applied to detect an invasive, biofouling bivalve, the golden mussel Limnoperna fortunei. Second, we initiated a one-time survey in a sub-canal of the SNWDP using refined sampling (12 sites in ~22 km canal) and considered a few environmental predictors. We found that detection of target eDNA in the main canal was achieved up to 1100 km from the putative source population but was restricted to the warmer months (May-November). Detection probability exhibited a significant positive relationship with average daily minimum air temperature and with water temperature, consistent with the expected spawning season. eDNA concentration in the main canal generally fluctuated across months and sites and was generally higher in warmer months. Golden mussel eDNA concentration in the sub-canal decreased significantly with distance from the source and with increasing water temperature and became almost undetectable at ~22 km distance. Given the enormity of the SNWDP, golden mussels may eventually expand their distribution in the main canal, with established "bridgehead" populations facilitating further spread. Our findings suggest an elevated invasion risk of golden mussels in the SNWDP in warm months, highlighting the critical period for spread and, possibly, management.


Asunto(s)
Incrustaciones Biológicas , Bivalvos , ADN Ambiental , Animales , ADN Ambiental/genética , Agua , Ecosistema , Bivalvos/genética
7.
Ecol Appl ; 34(1): e2926, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37864784
8.
Int J Mol Sci ; 24(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37834365

RESUMEN

Alternative splicing (AS), a pivotal biological process contributing to phenotypic plasticity, creates a bridge linking genotypes with phenotypes. Despite its importance, the AS mechanisms underlying environmental response and adaptation have not been well studied, and more importantly, the cis- and trans-acting factors influencing AS variation remain unclear. Using the model invasive congeneric ascidians, Ciona robusta, and Ciona savignyi, we compared their AS responses to environmental changes and explored the potential determinants. Our findings unveiled swift and dynamic AS changes in response to environmental challenges, and differentially alternative spliced genes (DASGs) were functionally enriched in transmembrane transport processes. Interestingly, both the prevalence and level of AS in C. robusta were lower than those observed in C. savignyi. Furthermore, these two indices were higher under temperature stresses compared to salinity stresses in C. savignyi. All the observed patterns underscore the species-specific and environmental context-dependent AS responses to environmental challenges. The dissimilarities in genomic structure and exon/intron size distributions between these two species likely contributed to the observed AS variation. Moreover, we identified a total of 11 and 9 serine/arginine-rich splicing factors (SRSFs) with conserved domains and gene structures in the genomes of C. robusta and C. savignyi, respectively. Intriguingly, our analysis revealed that all detected SRSFs did not exhibit prevalent AS regulations. Instead, we observed AS control over a set of genes related to splicing factors and spliceosome components. Altogether, our results elucidate species-specific and environmental challenge-dependent AS response patterns in closely related invasive ascidians. The identified splicing factors and spliceosome components under AS control offer promising candidates for further investigations into AS-mediated rapid responses to environmental challenges complementary to SRSFs.


Asunto(s)
Empalme Alternativo , Ciona intestinalis , Animales , Empalme Alternativo/genética , Transactivadores/genética , Genoma , Ciona intestinalis/genética , Factores de Empalme de ARN/genética
9.
Environ Pollut ; 333: 122093, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37352962

RESUMEN

Global rivers, particularly those in populated urban areas, are challenged by multiple stressors such as pollution from anthropogenic activities. Dissecting the relative role of each ecological process involved in structuring biotic communities is fundamental in both theoretical and applied ecology. The ecological niche-based species sorting and stochastic dynamics-based dispersal are two major competing processes in determining community structure. Studies have reached a common realization on the environmental gradient-geographical scale relationship (EGGSR), resulting in species sorting over dispersal in determining community structure at large geographical scales where significant environmental gradients often exist. However, this relationship has been recently challenged at fine geographical scales when significant environmental gradients are formed by local anthropogenic activities. Here, we used three receiving rivers of wastewater treatment plants (WWTPs) as the promising system to test the hypothesis that species sorting plays a dominant role over dispersal in structuring zooplankton communities at microgeographical scales (∼1.2 km). After WWTP effluent discharge, we consistently detected significant environmental changes in all three receiving rivers, leading to significant variation in both community structure and taxonomic co-occurrence networks. Variation partitioning showed that environmental variables explained higher proportions of community variation than spatial ones, supporting that species sorting played a dominant role over dispersal in structuring zooplankton communities. Thus, our findings here reject EGGSR, illustrating that the effect of species sorting has been overlooked in disturbed aquatic ecosystems at fine spatial scales. More importantly, all analyses in multiple rivers here validate the "microscale species sorting" hypothesis. The validation of such hypothesis provides a novel methodology for point source pollution management by assessing environment-community interactions and functional changes of biological communities. The differed variables underlying species sorting among three rivers illustrate that ecological management should be case-specific, with the full consideration of local water quality background and pollutant composition of each point pollution source.


Asunto(s)
Ecosistema , Calidad del Agua , Animales , Biota , Geografía , Ríos/química , Zooplancton
10.
RNA ; 29(5): 675-690, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36810233

RESUMEN

Rapid plastic response to environmental changes, which involves extremely complex underlying mechanisms, is crucial for organismal survival during many ecological and evolutionary processes such as those in global change and biological invasions. Gene expression is among the most studied molecular plasticity, while co- or posttranscriptional mechanisms are still largely unexplored. Using a model invasive ascidian Ciona savignyi, we studied multidimensional short-term plasticity in response to hyper- and hyposalinity stresses, covering the physiological adjustment, gene expression, alternative splicing (AS), and alternative polyadenylation (APA) regulations. Our results demonstrated that rapid plastic response varied with environmental context, timescales, and molecular regulatory levels. Gene expression, AS, and APA regulations independently acted on different gene sets and corresponding biological functions, highlighting their nonredundant roles in rapid environmental adaptation. Stress-induced gene expression changes illustrated the use of a strategy of accumulating free amino acids under high salinity and losing/reducing them during low salinity to maintain the osmotic homoeostasis. Genes with more exons were inclined to use AS regulations, and isoform switches in functional genes such as SLC2a5 and Cyb5r3 resulted in enhanced transporting activities by up-regulating the isoforms with more transmembrane regions. The extensive 3'-untranslated region (3'UTR) shortening through APA was induced by both salinity stresses, and APA regulation predominated transcriptomic changes at some stages of stress response. The findings here provide evidence for complex plastic mechanisms to environmental changes, and thereby highlight the importance of systemically integrating different levels of regulatory mechanisms in studying initial plasticity in evolutionary trajectories.


Asunto(s)
Aclimatación , Transcriptoma , Aclimatación/genética , Perfilación de la Expresión Génica , Regiones no Traducidas 3'/genética , Isoformas de Proteínas/genética , Empalme Alternativo , Poliadenilación
11.
Ecol Appl ; : e2772, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316814

RESUMEN

Elucidating processes and mechanisms involved in rapid local adaptation to varied environments is a poorly understood but crucial component in management of invasive species. Recent studies have proposed that genetic and epigenetic variation could both contribute to ecological adaptation, yet it remains unclear on the interplay between these two components underpinning rapid adaptation in wild animal populations. To assess their respective contributions to local adaptation, we explored epigenomic and genomic responses to environmental heterogeneity in eight recently colonized ascidian (Ciona intestinalis) populations at a relatively fine geographical scale. Based on MethylRADseq data, we detected strong patterns of local environment-driven DNA methylation divergence among populations, significant epigenetic isolation by environment (IBE), and a large number of local environment-associated epigenetic loci. Meanwhile, multiple genetic analyses based on single nucleotide polymorphisms (SNPs) showed genomic footprints of divergent selection. In addition, for five genetically similar populations, we detected significant methylation divergence and local environment-driven methylation patterns, indicating the strong effects of local environments on epigenetic variation. From a functional perspective, a majority of functional genes, Gene Ontology (GO) terms, and biological pathways were largely specific to one of these two types of variation, suggesting partial independence between epigenetic and genetic adaptation. The methylation quantitative trait loci (mQTL) analysis showed that the genetic variation explained only 18.67% of methylation variation, further confirming the autonomous relationship between these two types of variation. Altogether, we highlight the complementary interplay of genetic and epigenetic variation involved in local adaptation, which may jointly promote populations' rapid adaptive capacity and successful invasions in different environments. The findings here provide valuable insights into interactions between invaders and local environments to allow invasive species to rapidly spread, thus contributing to better prediction of invasion success and development of management strategies.

12.
Mol Ecol ; 31(13): 3598-3612, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35560847

RESUMEN

While adaptation is commonly thought to result from selection on DNA sequence-based variation, recent studies have highlighted an analogous epigenetic component as well. However, the relative roles of these mechanisms in facilitating population persistence under environmental heterogeneity remain unclear. To address the underlying genetic and epigenetic mechanisms and their relationship during environmental adaptation, we screened the genomes and epigenomes of nine global populations of a predominately sessile marine invasive tunicate, Botryllus schlosseri. We detected clear population differentiation at the genetic and epigenetic levels. Patterns of genetic and epigenetic structure were significantly influenced by local environmental variables. Among these variables, minimum annual sea surface temperature was identified as the top explanatory variable for both genetic and epigenetic variation. However, patterns of population structure driven by genetic and epigenetic variation were somewhat distinct, suggesting possible autonomy of epigenetic variation. We found both shared and specific genes and biological pathways among genetic and epigenetic loci associated with environmental factors, consistent with complementary and independent contributions of genetic and epigenetic variation to environmental adaptation in this system. Collectively, these mechanisms may facilitate population persistence under environmental change and sustain successful invasions across novel environments.


Asunto(s)
Epigenómica , Variación Genética , Adaptación Fisiológica/genética , Epigénesis Genética , Variación Genética/genética , Genética de Población , Genoma
13.
Artículo en Inglés | MEDLINE | ID: mdl-35504120

RESUMEN

Gene expression regulation has been widely recognized as an important molecular mechanism underlying phenotypic plasticity in environmental adaptation. However, it remains largely unexplored on the effects of genomic organization on gene expression plasticity under environmental stresses during biological invasions. Here, we use an invasive model ascidian, Ciona robusta, to investigate how genomic organization affects gene expression in response to salinity stresses during range expansions. Our study showed that neighboring genes were co-expressed and approximately 30% of stress responsive genes were physically clustered on chromosomes. Such coordinated expression was substantially affected by the physical distance and orientation of genes. Interestingly, the overall expression correlation of neighboring genes was significantly decreased under high salinity stresses, illustrating that the co-expression regulation could be disrupted by salinity challenges. Furthermore, the clustering of genes was associated with their function constraints and expression patterns - operon genes enriched in gene expression machinery had the highest transcriptional activity and expression stability. Notably, our analyses showed that the tail-to-tail genes, mainly involved in biological functions related to phosphorylation, homeostatic process, and ion transport, exhibited higher intrinsic expression variability and greater response to salinity challenges. Altogether, the results obtained here provide new insights into the effects of gene organization on gene expression plasticity under environmental challenges, hence improving our knowledge on mechanisms of rapid environmental adaptation during biological invasions.


Asunto(s)
Genoma , Estrés Fisiológico , Animales , Expresión Génica , Genómica , Salinidad
14.
Sci Adv ; 8(6): eabk0097, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35148174

RESUMEN

Globally, urbanization poses a major threat to terrestrial biodiversity, yet its impact on fish diversity is poorly understood, mainly because of surveying difficulties. In this study, environmental DNA metabarcoding was used to survey fish communities at 109 lentic and lotic sites across Beijing, and how environmental variables affect fish biodiversity at fine urban spatial scales was investigated. We identified 52 native and 23 non-native taxa, with lentic and lotic waters harboring both common and habitat-specific species. Water quality strongly affected native fish diversity, especially in lentic systems, but had little influence on non-native diversity. Fish diversity showed little response to urban land cover variation, but the relative sequence abundance of non-natives in lotic waters increased linearly with distance from the city center. Our findings illustrate the complex effects of urbanization on native versus non-native fishes in different aquatic habitats and highlight the distinctive considerations needed to conserve urban aquatic biodiversity.


Asunto(s)
ADN Ambiental , Animales , Biodiversidad , Ecosistema , Peces , Urbanización
15.
Sci Total Environ ; 807(Pt 3): 151043, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34673064

RESUMEN

Coastal ecosystems globally are exposed to the most pervasive anthropogenic activities, caused by a suite of human infrastructure and enterprises such as shipping ports, aquaculture facilities, fishing, and tourism. These anthropogenic activities may lead to changes in ecosystem biodiversity, followed by loss of ecosystem functioning and services. Shipping industry and aquaculture have also been recognized as the main vectors for introduction of marine non-indigenous species (NIS) worldwide. In this study, we used DNA metabarcoding-based methods to investigate plankton biodiversity under varying anthropogenic pressures (shipping and bivalve aquaculture) along the eastern Adriatic coast (the northernmost part of the Mediterranean Sea). Our comparative assessment revealed similar community structures among investigated coastal locations (Northern, Central and Southern Adriatic). When the whole plankton communities were considered, they did not differ significantly between port and aquaculture sites. However, the proportion of the unique zOTUs in the port samples was remarkably higher than that in aquaculture sites (40.5% vs 8.2%), indicating that port areas may receive higher abundance and species richness of NIS than aquaculture sites. Further important difference between the two types of anthropogenically impacted habitats was a high abundance of three notorious invaders - M. leidyi, M. gigas, and H. elegans in late summer at the aquaculture site in Northern Adriatic. Therefore, the plankton community of the area is under pressure not only from aquaculture activities, but also establishment of NIS. Port areas are probably under greater introduction pressure from NIS, but aquaculture sites may experience greater community changes due to their establishment.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Plancton/clasificación , Acuicultura , Código de Barras del ADN Taxonómico , Mar Mediterráneo , Navíos , Transportes
16.
Environ Sci Pollut Res Int ; 29(2): 2783-2791, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34378129

RESUMEN

Various types of pollutants derived from rapid industrialization and urbanization have largely threaten biodiversity and functioning of freshwater ecosystems globally. Morphological plasticity, especially body size-associated traits, is considered a functional response to water pollution in species, as such changes are often directly related to functioning of freshwater ecosystems through dynamics of food webs. However, detailed dynamics of pollution impacts on morphological plasticity remain largely unknown, particularly in the wild. Here, we used the model planktonic rotifer Brachionus calyciflorus to assess morphological response to chemical pollution in a river reach disturbed by sewage discharges. Multiple analyses showed dynamic morphological response to water pollution in wild B. calyciflorus populations. The distance between anterior lateral spines, lorica length, and egg short diameter were the most sensitive morphological indicators to water pollution, while spine length was stable in varied pollution conditions. Interestingly, body size and egg size were increased with accentuated water pollution, suggesting that wild populations maintain fitness by increasing feeding efficiency and reducing vulnerability to predation and ensure survival by producing large newborns in polluted environments. Total ammonia nitrogen was the leading nitrogen pollutant affecting body size, while total phosphorus and elements of Mn and As were the key factors relating to egg size. The results obtained here provide new sights into biological consequences of environmental pollution in the wild, thus advancing our understanding of pollution impacts on structure and functioning of freshwater ecosystems.


Asunto(s)
Rotíferos , Contaminantes Químicos del Agua , Animales , Ecosistema , Agua Dulce , Humanos , Recién Nacido , Agua , Contaminación del Agua
17.
Sci Total Environ ; 809: 151179, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34742954

RESUMEN

Environmental changes derived from various human activities have largely disturbed the structure and functioning of various biological communities. However, little is known on how such disturbance impacts species interactions in biological communities. This study aims to elucidate the variation of species interactions across multiple trophic levels and further determine crucial factor(s) in regulating observed variation. We collected plankton samples from Sanjiang Wetlands in Northeastern China and used random matrix theory (MRT)-based approach to construct species interaction networks for bacterioplanktons, protozoans, and metazoans, respectively. We found that biotic interactions were more complex at lower trophic levels. Network key species (e.g., module hubs and connectors) were detected only in the bacterioplankton network. More inter- and intra-module connections, particularly negative connections, were detected in the bacterioplankton network. Across all three trophic levels, the element sodium (Na) was the most important factor influencing the network structure, while at each trophic level, physicochemical factors, nutrients, and organic pollutants were identified as crucial determinants but their relative importance differed. In particular, no correlation was detected between the metazoan network and any environmental factor. After separating protozoan and metazoan communities into subgroups in relatively poor and good water environments, we found community interaction networks were more complex in good conditions than in poor conditions. A simple network structure (e.g., no inter-module connectors or intra-module hubs, and less competitive links) and less association with environmental factors in the higher trophic levels clearly illustrate that metazoan and protozoan communities in the fragmented wetlands are unstable and vulnerable. Therefore, further environmental changes may greatly influence species interactions in these communities. Collectively, our findings provide new insights into dynamics of influence of environmental changes on biotic interactions in aquatic biological communities, highlighting the necessity to use a multi-trophic strategy when assessing negative effects of environmental changes in aquatic ecosystems.


Asunto(s)
Ecosistema , Humedales , Animales , Efectos Antropogénicos , Biota , Humanos , Plancton
18.
Mar Environ Res ; 170: 105409, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34271483

RESUMEN

Protein-mediated bioadhesion is one of the crucial physiological processes in marine organisms, by which they can firmly adhere to underwater substrates. Most marine adhesive organisms are biofoulers, causing negative effects on marine ecosystems and huge economic losses to aquaculture and maritime industries. Furthermore, adhesive proteins in these organisms are promising bionic candidates for high-performance artificial materials with great application value. In-depth understanding of the bioadhesion in marine ecosystems is of dual significance for resolving biofouling issue and developing marine bionic products. Here, we review the research progress of protein-mediated bioadhesion in marine organisms. The adhesion processes such as protein biosynthesis and secretion are similar among organisms, but the detailed features such as compositions, structures, and molecular functions of adhesive proteins are distinct. Hydroxylation, glycosylation, and phosphorylation are important post-translational modifications during the processes of adhesion. The contents of some amino acids such as glycine, tyrosine and cysteine involved in underwater adhesion are significantly higher, which is a sequence feature of barnacle cement and mussel foot proteins. The amyloid structures and conserved domains/motifs such as EGF and vWFA distributed in adhesive proteins are involved in the underwater adhesion. In addition, the oxidative cross-linking also plays an important role in marine bioadhesion. Overall, the unique and common features identified for the protein-mediated bioadhesion in diverse marine organisms here provide background information and essential reference for characterizing marine adhesive proteins and associated functional domains, formulating antifouling strategies, and developing novel biomimetic adhesives.


Asunto(s)
Bivalvos , Thoracica , Adhesivos , Animales , Organismos Acuáticos , Ecosistema
19.
Ecol Evol ; 11(9): 4252-4266, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33976808

RESUMEN

Elucidating molecular mechanisms of environment-driven adaptive evolution in marine invaders is crucial for understanding invasion success and further predicting their future invasions. Although increasing evidence suggests that adaptive evolution could contribute to organisms' adaptation to varied environments, there remain knowledge gaps regarding how environments influence genomic variation in invaded habitats and genetic bases underlying local adaptation for most marine invaders. Here, we performed restriction-site-associated DNA sequencing (RADseq) to assess population genetic diversity and further investigate genomic signatures of local adaptation in the marine invasive ascidian, Molgula manhattensis. We revealed that most invasive populations exhibited significant genetic differentiation, low recent gene flow, and no signal of significant population bottleneck. Based on three genome scan approaches, we identified 109 candidate loci potentially under environmental selection. Redundancy analysis and variance partitioning analysis suggest that local environmental factors, particularly the salinity-related variables, represent crucial evolutionary forces in driving adaptive divergence. Using the newly developed transcriptome as a reference, 14 functional genes were finally obtained with potential roles in salinity adaptation, including SLC5A1 and SLC9C1 genes from the solute carrier gene (SLC) superfamily. Our findings confirm that differed local environments could rapidly drive adaptive divergence among invasive populations and leave detectable genomic signatures in marine invaders.

20.
Environ Sci Technol ; 55(4): 2500-2510, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33535746

RESUMEN

Mussel biofouling has become a problem in aquatic ecosystems, causing significant ecological impact and huge economic loss globally. Although several strategies have been proposed and tested, efficient and environment-friendly antifouling methods are still scarce. Here, we investigated the effects of recoverable magnetic ferroferric oxide nanoparticles (Fe3O4-NPs) with different sizes (10 and 100 nm), coatings (polyethylene glycol and polylysine), and concentrations (0.01 and 0.1 mg/L) on byssus adhesion-mediated biofouling by the notorious golden mussel Limnoperna fortunei. The results showed that magnetic Fe3O4-NPs, especially negatively charged polyethylene glycol-coated Fe3O4-NPs, size- and concentration-dependently reduced the byssus production, performance (breaking force and failure location), and adhesion rate. Further investigations on mechanisms showed that the down-regulation of foot protein 2 (Lffp-2) and energy-related metabolic pathways inhibited byssus production. The declined gene expression level and metal-binding ability of Lffp-2 significantly affected foot protein interactions, further reducing the plaque size and byssus performance. In addition, the change in the water redox state likely reduced byssus performance by preventing the interface interactions between the substrate and foot proteins. Our results confirm the effectiveness and underlying mechanisms of magnetic Fe3O4-NPs on mitigating L. fortunei biofouling, thus providing a reference for developing efficient and environment-friendly antifouling strategies against fouling mussels.


Asunto(s)
Incrustaciones Biológicas , Bivalvos , Nanopartículas de Magnetita , Animales , Incrustaciones Biológicas/prevención & control , Ecosistema , Alimentos Marinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...